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We derive the macroscopic Fourier’s Law of heat conduction from the exact gain-loss time convolutionless
quantum master equation under three assumptions for the interaction kernel. To second order in the interaction,
we show that the first two assumptions are natural results of the long time limit. The third assumption can be
satisfied by a family of interactions consisting of an exchange effect. The pure exchange model directly leads
to energy diffusion in a weakly coupled spin-1 /2 chain.
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Introduction. Fourier’s law, connecting the rate of heat
flow within a body to the temperature profile along the flow
path, is an empirical law based on observation. Despite its
fundamental nature, a derivation of this law from first prin-
ciples does not yet exist �1�.

In classical systems, extensive numerical simulations �2�
and rigorous derivations �1,3,4� manifested the applicability
of Fourier’s law for specifically designed nonlinear systems.
It is still a great challenge to derive this macroscopic law
from microscopic quantum principles. Quantum simulations
of heat flow in spin chains pointed out the validity of Fouri-
er’s law, in connection with the onset of quantum chaos
�5,6�. More recent studies have focused on the derivation of
this law from Schrödinger dynamics �7–9�. By using the Hil-
bert space average method, Michel et al. demonstrated the
emergence of heat diffusion within a quasi degenerate level
local Hamiltonian using the truncated Dyson series for the
short-time displacement operator �7�. Using this approach,
the transition from diffusive to ballistic dynamics at different
length scales was further explored �9�. These works success-
fully manifested the onset of Fourier’s law for a specific
class of quantum models. The rigorous derivation of this law
from quantum dynamics for general Hamiltonians is still a
great challenge.

In this paper we employ the most general nonperturbative
microscopic master equation of the gain-loss form to derive
the Fourier’s law quantum mechanically. Unlike the deriva-
tion in Ref. �7�, applicable for a class of modular designed
models, we use the most general local Hamiltonian. The dif-
fusive behavior is obtained by making three assumptions on
the interacting kernel in the microscopic master equation.
These assumptions can be traced down to the structure of
coupling between local sites. At weak coupling, approaching
the long time limit, we furthermore demonstrate that the first
and second assumptions are independent of the specific form
of the interaction, and the exchange interaction plays the
decisive role in order for the third assumption to hold.

Master equation. Consider a system with N local units
�particles�, each has the same M �could be infinite� dimen-
sional eigenspace spanned by bases ��n��, possibly coupled to
their own baths. The eigenspace of all N particles is spanned
by bases ��n�= �n1�1 �n2�2 �ni�i . . . �nN�N�. The most general
Hamiltonian of the system and its bath is

H = H0 + �HI, �1�

where H0=HS+HB and HS�	i=1
N 	ni

�ni
�i� �ni�i
ni� is the sys-

tem Hamiltonian. We assume that the energy spectra of the
sites are identical, �n�i�=�n�j��0, and the ground state en-
ergy is set as zero. HB is the bath Hamiltonian, consisting
degrees of freedom other than included in the system. The
bath may act locally on each site, HB=	i=1

N HB�i�, where
HB�i� couples to the ith local site. The second term HI in-
cludes interactions between system particles, where � char-
acterizes the strength of these interactions. It can be gener-
ally written as HI=	�n�
m �Bnm, where Bnm ’s are the matrix
elements of either system or bath operators. Practically, our
derivation of the Fourier law does not require the existence
of local thermal reservoirs, thus we focus later on a closed
system, as done in Ref. �7� for a specific model �see text after
Eq. �5��. The dynamics obeys the Liouville equation
�
�t�tot�t�=−i��HI�t� ,�tot�t����L�t��tot�t�, where �tot is the
density matrix of the total system, and we work in the inter-
action representation HI�t�=eiH0tHIe

−iH0t. The Liouville su-
peroperator L�t� is defined by this equation. The super pro-
jection operation of interest, ��t�=P�tot�t�, defines the
relevant part of the total density matrix for the open system.
This part exactly satisfies the time-local master equation �10�

�

�t
��t� = K�t���t� , �2�

given that the initial state is in the relevant subspace,
P�tot�0�=�tot�0�. The time-convolutionless generator K�t� is
in general an extremely complicated object, calculated using
perturbative expansions �10�. Though the time-local master
equation �2� is less well known than the Nakajima-Zwanzig
equation �11,12�, it is easy to show that these forms are
equivalent for non-diverging superoperators �13�. In order to
project the diagonal part of the total density �tot�t� we use the
following projection �13,12�:

P�tot = 	 �n�
n�tr��n�
n��tot� � �B, �3�

where �B is the bath thermal equilibrium density matrix, and
the trace is taken over both system and bath states. Note that
tr��n�
n ��tot�= Pn defines the probability to find the system in
state �n�. The time-local master equation can be exactly writ-
ten as �14�
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dPn

dt
= 	

m
Wnm�t�Pm − 	

m
Wmn�t�Pn, �4�

where the rates, or interacting kernels Wnm�t�, are compli-
cated functionals of the interaction HI�t�. Assuming that
PL�t�P=0, which is true for closed systems �12� and for
many open systems �10�, to second order in HI the expansion
K�t�=�0

t dsPL�t�L�s�P holds. One then obtains

Wmn�t� = 2�2 Re

0

t

d�Dnm���ei�En−Em��, �5�

where Bnm���=eiHB�Bnme−iHB�, and Dnm���
=trB�Bnm���Bmn�B�. The total energy En=	i=1

N �ni
�i� is an ei-

genvalue of HS. For a closed system Dnm���= �Bmn�2, where
Bnm’s are c numbers.

The gain-loss master equation �2� was introduced for a
closed system, and proved vigorously in Ref. �12�. In the
long time limit, or Markovian limit, the time-dependent in-
teracting kernel W�t� becomes a constant matrix for both
open or closed systems �15�. In what follows we focus on a
closed system �no local reservoirs�, and study energy diffu-
sion between system units due to the �system induced� HI
coupling. The starting point of our derivation is the exact
equation �2� with a nonperturbative kernel W.

Assumptions and derivation. First consider a one-
dimensional system. We employ the nearest neighbor inter-
action form HI=	i=1

N−1V�i , i+1�, where the symmetry V�i , i
+1�=V�i+1, i� holds. Our first assumption is that the inter-
acting kernel matrix W takes the same symmetry as the in-
teraction, i.e., W=	i=1

N−1W�i , i+1� and W�i , i+1�=W�i+1, i�.
This “localization” assumption implies that the many-site
correlation �kernel W� is given by the sum of two-site corre-
lations W�i , i+1�. This assumption is not trivial as the inter-
acting kernels are not lineally related to the interaction HI.
The matrix elements of W are therefore given by

Wnm�t� = 	
i=1

N−1

Wnini+1,mimi+1
�i,i + 1;t� �

j�i,i+1
	njmj

. �6�

As diagonal elements �n=m� do not contribute to Eq. �4�,
they are allowed to be exceptions of the assumption. Our
second assumption describes energy conservation between
initial and final system states,

Wnini+1,mimi+1
�i,i + 1;t�

= �wnini+1
�i,i + 1;t�; ni = mi+1 and ni+1 = mi

0; otherwise.
�7�

Besides energy conservation, this condition also implies that
the local spectra are anharmonic, see discussion after Eq.
�17�. In the third assumption, we assume that wnini+1

�i , i
+1; t�=w�i , t�, independent of the ni and ni+1 quantum num-
bers. The probability of finding the ith particle in state �ni�i is

Pni
�i� = tr��ni�i
ni��tot� = 	

nj�ni

Pn. �8�

Incorporating Eqs. �6�–�8� into �4� we obtain

dPn�i�
dt

= w�i,t��Pn�i + 1� − Pn�i��

− w�i − 1,t��Pn�i� − Pn�i − 1�� , �9�

where for convenience we use the short notation Pn�i�. In
deriving �9� we have also utilized the symmetry W�i , i+1�
=W�i+1, i� which holds exactly for a closed system at sec-
ond order �see text after Eq. �5��. Next we write an equation
of motion for the internal energy at each site, u�i�
=	�nPn�i�,

du�i�
dt

= w�i,t��u�i + 1� − u�i�� − w�i − 1,t��u�i� − u�i − 1�� .

�10�

The continuous version of this equation is

�u�x,t�
�t

= a2 �

�x
�w�x,t�

�u�x,t�
�x

� , �11�

where a is the distance between neighboring sites. Generali-
zation of this derivation to a three-dimensional simple cubic
lattice is straightforward, leading to Eq. �11� with r and �
replacing �

�x and x. Applying the continuity equation for the
energy density, �u�r,t�

�t =−� ·J�r , t�, J is the heat current, we
exactly obtain the Fourier law

J�r,t� = − w�r,t�a2�u�r,t� = − 
�r,t��T�r,t� . �12�

Here T�r , t� denotes the temperature profile and 
�r , t�
=w�r , t�a2CV with CV=�u /�T as the specific heat. The heat
conductivity 
 is essentially time dependent due to the ex-
plicit time dependence of the microscopic rates w�r , t�. In the
long time, or Markovian limit, the microscopic rates and the
temperature profile become constants, leading to a time-
independent relation. Equation �12� is the main result of our
paper. It characterizes the intrinsic properties of a closed sys-
tem. We emphasize that it was derived from the exact master
equation �2� for a generic local Hamiltonian. While most
studies in this context analyze the onset of the Fourier’s law
in nonequilibrium steady-state situations �2�, here we have
shown that an isolated system prepared with an arbitrary
nonuniform temperature may relax obeying Fourier’s dy-
namics �1�.

An exact model in the second order. We present next a
model Hamiltonian that exactly satisfies the three assump-
tions leading to Fourier’s law in the Markovian limit. We
assume a closed system, and employ a pure exchange inter-
action form

HI = 	
i=1

N−1

Ji,i+1E�i,i+1�. �13�

Here E�i,i+1� is the permutation operator and Ji,i+1 are nearest-
neighbor coupling constants �superexchange for spin sys-
tem�, taken as constants Ji,i+1=J and set to one in the follow-
ing discussion. In the two-level case �M =2�, since E�i,i+1�

= 1
2 �1+�i ·�i+1�, Eq. �13� is simply the Heisenberg spin-1 /2

exchange interaction model. The correlation function in �5�
is given by
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Dnm��� = 	
i=1

N−1

	nimi+1
	ni+1mi �

j�i,i+1
	njmj

, �14�

when n�m, satisfying the first assumption. Furthermore, the
second assumption is fulfilled here exactly as the matrix W
has the exact form of Eq. �7� with w�i , t�=2�2t. In order to
check the validity of the second-order approximation, we
compare this result with the exact solution for a three unit
system, N=3 and M =2. Let the initial state be �1�1 �0�2 �0�3.
We can get an exact solution for the dynamics for the inter-
action �13�, dP1�2� /dt=w�t��P1�1�+ P1�3�−2P1�2��, where
w�t�=

�2� sin�2�2�t�
2 cos2��2�t�−1

. For weak coupling �small ��, w�t�=2�2t,
which is the same as the second order result. While this
model satisfies all three assumptions, in the long time limit it
does not lead to the standard Fourier’s law with a constant
conductivity.

However, the energy difference between spin states of site
i may slightly differ from that of site i+1, �ni,ni+1

�i�
= ��ni

�i�−�ni+1
�i��− ��ni

�i+1�−�ni+1
�i+1���0. This effect may

originate from thermal fluctuations. In this case, wnini+1
�i , t�

=2�2
sin��ni,ni+1

�i��t�

�ni,ni+1
�i� . At short times, if the difference �ni,ni+1

�i� is

small, one again finds w�t�� t. In contrast, at long times
wnini+1

�i�→2
�2	��ni,ni+1
�i��. When the energy spectrum of

each spin state forms a band that is dense enough �16�, the
Fermi’s Golden rule is obtained, wnini+1

�i�=2
�2��0�, where
��0� is the density of states at zero detuning.

Thus, this simple exchange model exactly reproduces the
long time Fourier law �12� with 
=2
�2a2CV��0�. This re-
sult manifests that the local sites do not need to acquire ex-
actly identical spectra. It also provides a microscopic expla-
nation of the validity of Fourier’s law in spin chains with
Heisenberg-type interactions �17�.

Long time (Markovian) limit. Next we show that at second
order in the interacting kernel the first two assumptions �Eqs.
�6� and �7�� are model independent in the long time limit,
and the third assumption is valid for family of interactions
with exchange effect. We consider the most general interac-
tion V�i , i+1� for a one-dimensional system. It is easy to
show that

Bnm = 	
i=1

N−1

Vnini+1,mimi+1
�i,i + 1� �

l�i,i+1
	nlml

. �15�

In the long time �Markovian� limit Eq. �5� reduces to

Wmn�t → � � = 2
�2�Bmn�2	�En − Em� , �16�

using
sin��En−Em�t�

�En−Em� →
	�En−Em� when t→�. Assuming the
bound states are nondegenerate, a somewhat tedious calcula-
tion shows that the first assumption is satisfied, and the off-
diagonal matrix elements are given by

Wnini+1,mimi+1
�i,i + 1;t� = 2
�2�Vnini+1,mimi+1

�i,i + 1��2

�	��nini+1,mimi+1
� , �17�

where �nini+1,mimi+1
=�ni

+�ni+1
−�mi

−�mi+1
. Since �n�0, the

delta function in Eq. �17� implies that �ni
=�mi+1

and �ni+1
=�mi

, provided that the energy spectra are anharmonic.

Therefore, in the nondegenerate case, only transitions be-
tween the quantum states ni=mi+1 and ni+1=mi exist, in ac-
cordance with the second assumption. In contrast, when the
energy spectra are strictly harmonic, the delta function can
be satisfied for a large number of combinations, �ni

−�mi
=�mi+1

−�ni+1
= j�0. Here �0 is the energy difference between

subunit states �equal for all N� and j is an integer. In this case
the second assumption does not hold, and we cannot derive
Eq. �9� and the subsequent result �12�. Thus, interestingly, in
order to derive Fourier’s law, the system spectrum should be
anharmonic, in accordance with classical results �1,2�.

At second order, the first two assumptions are therefore
the results of the Markovian limit. As discussed above, we
can expect that there is a dense band structure around each
level �n, originating from bath fluctuations or quantum tun-
neling between sites. Defining the density of states at the
energy difference around � as ����, we obtain �16�

wnini+1
�i� = 2
�2��0��Vnini+1,ni+1ni

�i,i + 1��2, �18�

which manifests that the third assumption is valid, depending
on the form of specific Hamiltonians. We calculate next the
microscopic rates for different types of interactions. Assum-
ing translational symmetry in the system, we need only dis-
cuss a pair of sites, for instance between site 1 and 2,
Vn1n2,n2n1

�1,2�= 
n1n2 �V�1,2� �n2n1�.
In general, particles at each site may be electrons or at-

oms. To simplify, we consider the case with one particle at
each site. Our first example is the short-range delta interac-
tion, V�1,2�=g	�r12�, where r12= �x2−x1�, and x1�x2� is the
coordinate of the first �second� particle. Physically, this in-
teraction describes particles that move almost independently
in the site interior, while collisions, leading to energy ex-
change between particles, occur at the edge points x1=x2.
This picture is appropriate for describing phonon collisions
in solids �18�. For this type of interaction the matrix elements
become

Vn1n2,n2n1
�1,2� = g
 dx��n1

�x��2��n2
�x��2. �19�

This integral is almost independent of quantum numbers n1
and n2 for many systems �19�. Therefore, the third assump-
tion is generally valid for short-range interactions. For ex-
ample, in one-dimensional infinite square well �width d� with
the wave function �n�x�=�2

d sin n
x
d , the matrix element

Vn1n2,n2n1
�1,2�=1 /d is completely independent of quantum

numbers, assuming d�a so that two particles could collide.
Our second example is the long-range interaction. We

choose the general form V�1,2�=V�r12���1+�2E�1,2��, where
the �’s are constants and E�1,2� is the spacious exchange op-
erator �20�. Considering the first-order contribution to this
potential, V�1,2�= �x2−x1 � ��1+�2E�1,2��, the matrix elements
Vn1n2,n2n1

�1,2� become the sum of the direct �D� and ex-
change �E� terms,

Vn1n2,n2n1

D �1,2� = �1
 dx1dx2�
n1

* �x1��
n2

* �x2��x2 − x1�

��n1
�x2��n2

�x1� ,

FOURIER’S LAW OF HEAT CONDUCTION: QUANTUM… PHYSICAL REVIEW E 77, 060101�R� �2008�

RAPID COMMUNICATIONS

060101-3



Vn1n2,n2n1

E �1,2� = �2
 dx1dx2��n1
�x1��2

���n2
�x2��2�x2 − x1� .

In what follows we take �1=�2=1. If the overlap between
the wave functions of two particles is zero, the direct integral
diminishes because of the orthogonality of two states, and
the exchange integral �x2�x1� is Vn1n2,n2n1

E �1,2�=a
+ 
n2 �x2� �n2�− 
n1 �x1 �n1�, where x2�=x2−a is the relative co-
ordinate of particle 2. If the wave function, �n�x� has a well-
defined parity, 
n �x �n�=0 for the relative coordinate of each
particle, implying that Vn1n2,n2n1

�1,2�=a is a constant. This
satisfies the third assumption. Note that the result is indepen-
dent of the details of the local Hamiltonian.

If the overlap is not zero, yet small, the direct integral is
expected to be small. Considering again the one-dimensional
infinite square well, when a /d�1, two particles will overlap.
Numerical calculations show that for quantum numbers n1,
n2 ranging from 1 to 20 the direct integrals are less than
one-tenth of the exchange integrals and Vn1n2,n2n1

�1,2� is al-
most a constant, very close to a �derivation around 3% when
0.4�a /d�1�. The larger the values of a /d, the smaller the
ratio between the direct and the exchange integrals.

We also calculate the interaction V�1,2� for the harmonic
potential V�r1,2�=r12

2 . We find that when a /d varies from 0.7
to 0.95 the exchange integral is almost a constant with de-
viations from 14% to 4%, and the ratio between the direct
and exchange integrals is 0.14–0.1.

The temperature dependence of the heat conductivity 


results from the interplay between the specific heat and the
interaction kernel. The specific heat, defined per unit, can be
easily calculated for different models, e.g., for a spin chain of

�0 spacing, CV=
�0

2

T2 e�0/T�e�0/T+1�−2. In contrast, our ap-
proach does not directly bring in the temperature dependence
of the kernel Wmn. Physically, since Vn1n2,n2n1

�1,2� is a func-
tion of the intersite separation, the lattice vibrations can
modify it, thus introduce temperature dependent transition
rates. This effect can be successfully included by phenom-
enologically introducing a temperature dependent interaction
�21,22�. Here we adopt the simple form VT�r12�
=V�r12���r12,T�, where T may be the average temperature of
site 1 and 2, and ��r12,T�=exp�−�f�T�r12�. In the case of
interacting ions �21�, � is inversely proportional to the Fermi
velocity and f�T�=T. When f�T�→�, VT�r12�
→ 2

�f�T�V�0�	�r12�. Therefore, for high temperatures 

�1 / f�T�2, as the lattice specific heat typically saturates. For
the ionic solid of Ref. �21� one obtains 
�1 /T2, in agree-
ment with standard expectations �18�.

Summary. We have presented a microscopic quantum
derivation of Fourier’s law of heat conduction that is not
limited to specifically designed models. The derivation relies
on three assumptions that are satisfied in weak coupling and
at long times for a family of exchange interaction potentials.
Our analysis naturally implies that energy diffusion cannot
emerge in closed harmonic models, in agreement with the
behavior of classical systems.
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